
QMCPACK Bechmark OLCF-6
This is the OLCF-6 benchmark for QMCPACK.

This repository describes the QMCPACK benchmarks and workflow for OLCF-6. The general OLCF-6 benchmark run rules apply except where

explicitly modified in this document and should be reviewed before running this benchmark.

QMCPACK Overview

QMCPACK is an open-source many-body ab initio Diffusion Quantum Monte Carlo code for computing the electronic structure of atoms,

molecules, and solids. Ab-initio Quantum Monte-Carlo is one of the leading methods that allow the calculation of many-electron interactions

in solids that goes beyond the capabilities of the most widely used density functiona approaches in being able to capture the many body

effects that are inaccessible less computationally demanding methods. The QMCPACK code is described and available from

https://www.qmcpack.org (https://www.qmcpack.org).

Electron positions are randomly sampled by a large number of Markov chains (or “walkers”). The benchmark uses a diffusion quantum

Monte Carlo method that uses a diffusion-and-branch algorithm and a target population of walkers to evolve the walkers in time. During the

simulation, the fluctuating population of walkers is load balanced between nodes at every time step of the simulation. In production

simulations, measurements/statistics are collected at each time step of the simulation and for all the walkers.

The benchmarks are particularly sensitive to floating point, memory bandwidth and memory latency performance. To obtain high

performance, the compiler’s ability of optimize and vectorize the application is critical. Strategies to place more of the walker data higher in

the memory hierarchy are likely to increase performance.

Code access and compilation

The process of building the benchmark has three basic steps: obtaining the source code, configuring the build system, and compiling the

source code.

Obtaining the QMCPACK source Code

The QMCPACK version for this benchmark is the v3.17.1 release from August 25, 2023 and is included with this benchmark package. The

source code was originally obtained from QMCPACK GitHub repository at: https://github.com/QMCPACK/qmcpack/releases/tag/v3.17.1

(https://github.com/QMCPACK/qmcpack/releases/tag/v3.17.1)

Configuring the QMCPACK build system

QMCPACK uses Cmake to configure its build. Configuration options are described in the documentation at https://qmcpack.readthedocs.io

/en/develop/installation.html#configuration-options (https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options).

QMCPACK configuration used in Summit benchmarks

QMCPACK version

This benchmark was constructed using the QMCPACK release version 3.17.1 from August 25, 2023.

Software prerequisites

Building QMCPACK has the following compiler and library requirement:

• C/C++ compiler. C++ compilers are required to support the C++ 17 standard.

• An MPI library.

• BLAS/LAPACK, numerical, and linear algebra libraries. Use platform-optimized libraries where available.

• CMake, build utility (http://www.cmake.org (http://www.cmake.org)).

• Libxml2, XML parser (http://xmlsoft.org (http://xmlsoft.org)).

• HDF5, portable I/O library (http://www.hdfgroup.org/HDF5/ (http://www.hdfgroup.org/HDF5/)). Good performance at large scale requires

parallel version >= 1.10.

• BOOST, peer-reviewed portable C++ source libraries (http://www.boost.org (http://www.boost.org)). Minimum version is 1.61.0.

• FFTW, FFT library (http://www.fftw.org/ (http://www.fftw.org/)).

Building QMCPACK

When using the QMCPACK distribution downloaded from https://github.com/QMCPACK/qmcpack/archive/refs/tags/v3.17.1.tar.gz

(https://github.com/QMCPACK/qmcpack/archive/refs/tags/v3.17.1.tar.gz), follow these steps:

tar -xzf qmcpack-3.17.1-tar.gz

cd qmcpack-3.17.1/build

cmake -DCMAKE_C_COMPILER=mpicc \

 -DCMAKE_CXX_COMPILER=mpicxx \

 ..

make -j 8

Possible configuration options can be found in the QMCPACK manual at https://qmcpack.readthedocs.io/en/develop

/installation.html#configuration-options (https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options).

https://www.qmcpack.org/
https://www.qmcpack.org/
https://www.qmcpack.org/
https://www.qmcpack.org/
https://www.qmcpack.org/
https://www.qmcpack.org/
https://github.com/QMCPACK/qmcpack/releases/tag/v3.17.1
https://github.com/QMCPACK/qmcpack/releases/tag/v3.17.1
https://github.com/QMCPACK/qmcpack/releases/tag/v3.17.1
https://github.com/QMCPACK/qmcpack/releases/tag/v3.17.1
https://github.com/QMCPACK/qmcpack/releases/tag/v3.17.1
https://github.com/QMCPACK/qmcpack/releases/tag/v3.17.1
https://github.com/QMCPACK/qmcpack/releases/tag/v3.17.1
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
http://www.cmake.org/
http://www.cmake.org/
http://www.cmake.org/
http://www.cmake.org/
http://www.cmake.org/
http://www.cmake.org/
http://xmlsoft.org/
http://xmlsoft.org/
http://xmlsoft.org/
http://xmlsoft.org/
http://xmlsoft.org/
http://xmlsoft.org/
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.fftw.org/
http://www.fftw.org/
http://www.fftw.org/
http://www.fftw.org/
http://www.fftw.org/
http://www.fftw.org/
https://github.com/QMCPACK/qmcpack/archive/refs/tags/v3.17.1.tar.gz
https://github.com/QMCPACK/qmcpack/archive/refs/tags/v3.17.1.tar.gz
https://github.com/QMCPACK/qmcpack/archive/refs/tags/v3.17.1.tar.gz
https://github.com/QMCPACK/qmcpack/archive/refs/tags/v3.17.1.tar.gz
https://github.com/QMCPACK/qmcpack/archive/refs/tags/v3.17.1.tar.gz
https://github.com/QMCPACK/qmcpack/archive/refs/tags/v3.17.1.tar.gz
https://github.com/QMCPACK/qmcpack/archive/refs/tags/v3.17.1.tar.gz
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options
https://qmcpack.readthedocs.io/en/develop/installation.html#configuration-options

Running the benchmark

Input files and batch scipts for the various systems are provided in the benchmarks directory. Each problem has its own subdirectory within

the benchmarks directory. Benchmark problems with three different base memory requirements are provided (low [32GB], mid [64GB], high

[96GB]). These problems can be run with different number of walkers per node or device and the best performance number obtainable

should be reported.

The input files for the benchmark runs are the pseudopotentials (Ni.opt.xml and O.xml), the orbital file (NiO-fcc-supertwist111-

supershift000-S64.h5) and the main qmcpack input (NiO_256_low.in.xml, NiO_256_mid.in.xml and NiO_256_high.in.xml). To run

the benchmark, $walkers in the input file has to be replaced by the number of walkers per MPI rank and $orbpath with the path to the

orbital file.

Within the respective benchmark directory run the job through the respective equivalent of

srun -n #mpi_ranks /path/to/qmcpack/qmcpack --enable-timers=fine NiO-example.in.xml >qmc.out

(Example script for automatic replacement and job submission on OLCF Summit for multiple walker counts are provided as submit_runs-

nodes_1.py and submit_runs-nodes_54.py)

The provided script qmc_throughput.py extracts the troughput number for a benchmark run from the QMCPACK stdout, i.e. the qmc.out

from above.

The results reported should be monte carlo steps per second for the proposed system, monte carlo steps per second for a single node

and number of walkers per node used to achieve these results.

Benchmark Size min. device memory

NiO_256_low Small 32GB

NiO_256_mid Medium 64GB

NiO_256_high Large 96GB

Results

Reference performance: OLCF Summit

As the regular compute nodes only provide 16GB of device memory, the benchmark references on Summit are limited to the use of the

Summit High Memory nodes that provide 32GB of device memory. As there are only 54 HM nodes available, here we report the reference

performance for 1, 4 and 54 nodes for the NiO_256_low case.

Benchmark. Nodes Walkers / rank Steps/second Steps/second / node

NiO_256_low 1 86 16.095 16.095

NiO_256_low 4 86 64.643 16.161

NiO_256_low 54 86 871.981 16.148

As ilustration we provide the steps/second on a single Summit-HM node up to the memory limit.

